Time Periodic Solutions of the Navier-Stokes Equations with Nonzero Constant Boundary Conditions at Infinity
نویسندگان
چکیده
We construct solutions for the Navier-Stokes equations in three dimensions with a time periodic force which is of compact support in a frame that moves at constant speed. These solutions are related to solutions of the problem of a body which moves within an incompressible fluid at constant speed and rotates around an axis which is aligned with the motion. In contrast to other authors who analayze stationary solutions in a frame of reference attached to the body, the analysis for the present problem is done in a frame which is moving at constant speed but is non rotating. This avoids the unpleasant unbounded linear terms which are present in a description in a rotating frame.
منابع مشابه
Weak Solutions of Non Coercive Stochastic Navier-stokes Equations in R
We prove existence of weak solutions of stochastic Navier-Stokes equations in R which do not satisfy the coercivity condition. The equations are formally derived from the critical point of some variational problem defined on the space of volume preserving diffeomorphisms in R. Since the domain of our equation is unbounded, it is more difficult to get tightness of approximating sequences of solu...
متن کاملOn convergence of trajectory attractors of 3D
We study the relations between the long-time dynamics of the Navier–Stokes-α model and the exact 3D Navier–Stokes system. We prove that bounded sets of solutions of the Navier–Stokes-α model converge to the trajectory attractor A0 of the 3D Navier–Stokes system as time tends to infinity and α approaches zero. In particular, we show that the trajectory attractor Aα of the Navier–Stokes-α model c...
متن کاملA comparative study between two numerical solutions of the Navier-Stokes equations
The present study aimed to investigate two numerical solutions of the Navier-Stokes equations. For this purpose, the mentioned flow equations were written in two different formulations, namely (i) velocity-pressure and (ii) vorticity-stream function formulations. Solution algorithms and boundary conditions were presented for both formulations and the efficiency of each formulation was investiga...
متن کاملTime-periodic solutions to the Navier-Stokes equations in the three-dimensional whole-space with a drift term: Asymptotic profile at spatial infinity
متن کامل
A Stochastic Lagrangian Proof of Global Existence of the Navier-stokes Equations for Flows with Small Reynolds Number
We consider the incompressible Navier-Stokes equations with spatially periodic boundary conditions. If the Reynolds number is small enough we provide an elementary short proof of the existence of global in time Hölder continuous solutions. Our proof is based on the stochastic Lagrangian formulation of the Navier-Stokes equations, and works in both the two and three dimensional situation.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Math. Analysis
دوره 43 شماره
صفحات -
تاریخ انتشار 2011